Identification of Bifurcations from Observations of Noisy Biological Oscillators.
نویسندگان
چکیده
Hair bundles are biological oscillators that actively transduce mechanical stimuli into electrical signals in the auditory, vestibular, and lateral-line systems of vertebrates. A bundle's function can be explained in part by its operation near a particular type of bifurcation, a qualitative change in behavior. By operating near different varieties of bifurcation, the bundle responds best to disparate classes of stimuli. We show how to determine the identity of and proximity to distinct bifurcations despite the presence of substantial environmental noise. Using an improved mechanical-load clamp to coerce a hair bundle to traverse different bifurcations, we find that a bundle operates within at least two functional regimes. When coupled to a high-stiffness load, a bundle functions near a supercritical Hopf bifurcation, in which case it responds best to sinusoidal stimuli such as those detected by an auditory organ. When the load stiffness is low, a bundle instead resides close to a subcritical Hopf bifurcation and achieves a graded frequency response-a continuous change in the rate, but not the amplitude, of spiking in response to changes in the offset force-a behavior that is useful in a vestibular organ. The mechanical load in vivo might therefore control a hair bundle's responsiveness for effective operation in a particular receptor organ. Our results provide direct experimental evidence for the existence of distinct bifurcations associated with a noisy biological oscillator, and demonstrate a general strategy for bifurcation analysis based on observations of any noisy system.
منابع مشابه
The Impact of Time Delays on the Robustness of Biological Oscillators and the Effect of Bifurcations on the Inverse Problem
Differential equation models for biological oscillators are often not robust with respect to parameter variations. They are based on chemical reaction kinetics, and solutions typically converge to a fixed point. This behavior is in contrast to real biological oscillators, which work reliably under varying conditions. Moreover, it complicates network inference from time series data. This paper i...
متن کاملSpectral Analysis of Noisy Oscillators near Hopf Bifurcations ∗
We compare the dynamics of nonlinear noisy oscillators near the two types of the Hopf bifurcation. Prior to the bifurcation, in the regime of damped oscillations around the stable focus, noise serves as a bifurcation precursor: the power spectrum includes a peak at the frequency of the self-sustained oscillations. Super-and sub-critical Hopf bifurcations differ crucially in the noise dependence...
متن کاملIdentifying dynamical systems with bifurcations from noisy partial observation.
We propose a statistical machine-learning approach to derive low-dimensional models by integrating noisy time-series data from partial observation of high-dimensional systems, aiming to utilize quantitative data on biological phenomena in the cell. In particular, the method estimates a model from data at different values of a bifurcation parameter in order to characterize biological functions a...
متن کاملIdentification of Alzheimer disease-relevant genes using a novel hybrid method
Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...
متن کاملSynchronizing Independent Gene Oscillators by Common Noisy Signaling Molecule
The ability to detect and respond to changes in the extracellular environment is a basic necessity for survival of all organisms. Consequently, diverse bio-rhythms are generated by hundreds of cellular oscillators that somehow manage to operate synchronously under various fluctuated environments. It remains, however, to be exploited how behaviors of a noisy microscopic molecule affect the macro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 111 4 شماره
صفحات -
تاریخ انتشار 2016